313 research outputs found

    A Higgs Quadruplet for Type III Seesaw and Implications for μeγ\mu \to e\gamma and μe\mu - e Conversion

    Full text link
    In Type III seesaw model the heavy neutrinos are contained in leptonic triplet representations. The Yukawa couplings of the triplet fermion and the left-handed neutrinos with the doublet Higgs field produce the Dirac mass terms. Together with the Majorana masses for the leptonic triplets, the light neutrinos obtain non-zero seesaw masses. We point out that it is also possible to have a quadruplet Higgs field to produce the Dirac mass terms to facilitate the seesaw mechanism. The vacuum expectation value of the quadruplet Higgs is constrained to be small by electroweak precision data. Therefore the Yukawa couplings of a quadruplet can be much larger than those for a doublet. We also find that unlike the usual Type III seesaw model where at least two copies of leptonic triplets are needed, with both doublet and quadruplet Higgs representations, just one leptonic triplet is possible to have a phenomenologically acceptable model because light neutrino masses can receive sizable contributions at both tree and one loop levels. Large Yukawa couplings of the quadruplet can induce observable effects for lepton flavor violating processes μeγ\mu \to e \gamma and μe\mu - e conversion. Implications of the recent μeγ\mu \to e\gamma limit from MEG and also limit on μe\mu - e conversion on Au are also given. Some interesting collider signatures for the doubly charged Higgs boson in the quadruplet are discussed.Comment: Latex 11 pages, 1 figure. A few references adde

    Oxygen-induced p(2x3) reconstruction on Mo(112) studied by LEED and STM

    No full text
    The open trough-and-row Mo(112) surface serves as substrate for the epitaxial growth of MoO2. In the early stage of oxygen exposure, oxygen chemisorption induces a p(2x3) surface reconstruction of the missing row type on Mo(112). The surface structure of this reconstructed surface has been studied in detail by low-energy electron diffraction and scanning tunneling microscope. The experimental findings can be explained based on the effective medium theory for oxygen adsorption on transition-metal surfaces, providing a structure model for the oxygen-modified Mo(112) surface. The structure model allows the discussion of the oxygen-chemisorbed surface phase as a possible precursor state fo

    Bounds on neutrino masses from leptogenesis in type-II see-saw models

    Full text link
    The presence of the triplet ΔL\Delta_{L} in left-right symmetric theories leads to type-II see-saw mechanism for the neutrino masses. In these models, assuming a normal mass hierarchy for the heavy Majorana neutrinos, we derive a lower bound on the mass of the lightest of heavy Majorana neutrino from the leptogenesis constraint. From this bound we establish a consistent picture for the hierarchy of heavy Majorana neutrinos in a class of left right symmetric models in which we identify the neutrino Dirac mass matrix with that of Fritzsch type charged lepton mass matrix. It is shown that these values are compatible with the current neutrino oscillation data.Comment: minor typos corrected, references added, match with published versio

    Leptogenesis Bound on Spontaneous Symmetry Breaking of Global Lepton Number

    Full text link
    We propose a new class of leptogenesis bounds on the spontaneous symmetry breaking of global lepton number. These models have a generic feature of inducing new lepton number violating interactions, due to the presence of the Majorons. We analyzed the singlet Majoron model with right-handed neutrinos and find that the lepton number should be broken above 10^5 GeV to realize a successful leptogenesis because the annihilations of the right-handed neutrinos into the massless Majorons and into the standard model Higgs should go out of equilibrium before the sphaleron process is over. We then argue that this type of leptogenesis constraint should exist in the singlet-triplet Majoron models as well as in a class of R-parity violating supersymmetric Majoron models.Comment: 4 pages, 2 figure

    The chemical composition of globular clusters in the Local Group

    Full text link
    We present detailed abundance measurements for 45 globular clusters (GCs) in galaxies in (and, in one case, beyond) the Local Group. The measurements are based on new high-resolution integrated-light spectra of GCs in NGC 185, NGC 205, M31, M33, and NGC 2403, combined with reanalysis of previous observations of GCs in the Fornax dSph, WLM, NGC 147, NGC 6822, and the Milky Way. The GCs cover the range -2.8 < [Fe/H] < -0.1 and we determined abundances for Fe, Na, Mg, Si, Ca, Sc, Ti, Cr, Mn, Ni, Cu, Zn, Zr, Ba, and Eu. Corrections for non local thermodynamic equilibrium effects are included for Na, Mg, Ca, Ti, Mn, Fe, Ni, and Ba. For several of the galaxies, our measurements provide the first quantitative constraints on the detailed composition of their metal-poor stellar populations. Overall, the GCs in different galaxies exhibit remarkably uniform abundance patterns of the alpha-, iron-peak, and neutron-capture elements, with a dispersion of less than 0.1 dex in [alpha/Fe] for the full sample. There is a hint that GCs in dwarf galaxies are slightly less alpha-enhanced (by about 0.04 dex on average) than those in larger galaxies. One GC in M33 (HM33-B) resembles the most metal-rich GCs in the Fornax dSph (Fornax 4) and NGC 6822 (SC7) by having alpha-element abundances closer to scaled-solar values, possibly hinting at an accretion origin. We find that the alpha-element abundances strongly correlate with those of Na, Sc, Ni, and Zn. Several GCs with [Fe/H]<-1.5 are deficient in Mg compared to other alpha-elements. We find no GCs with strongly enhanced r-process abundances as reported for metal-poor stars in some ultra-faint dwarfs and the Magellanic Clouds. The similarity of the abundance patterns for metal-poor GCs in different environments points to similar early enrichment histories and only allow for minor variations in the initial mass function.Comment: 34 pages + 6 appendices. Accepted for publication in Astronomy & Astrophysic

    Probing top charged-Higgs production using top polarization at the Large Hadron Collider

    Get PDF
    We study single top production in association with a charged Higgs in the type II two Higgs doublet model at the Large Hadron Collider. The polarization of the top, reflected in the angular distributions of its decay products, can be a sensitive probe of new physics in its production. We present theoretically expected polarizations of the top for top charged-Higgs production, which is significantly different from that in the closely related process of t-W production in the Standard Model. We then show that an azimuthal symmetry, constructed from the decay lepton angular distribution in the laboratory frame, is a sensitive probe of top polarization and can be used to constrain parameters involved in top charged-Higgs production.Comment: 22 pages, 18 Figures, Discussions about backgrounds and NLO corrections added, figures modified, references added, Version published in JHE

    Population III X-ray Binaries and their Impact on the Early Universe

    Full text link
    The first population of X-ray binaries (XRBs) is expected to affect the thermal and ionization states of the gas in the early Universe. Although these X-ray sources are predicted to have important implications for high-redshift observable signals, such as the hydrogen 21-cm signal from cosmic dawn and the cosmic X-ray background, their properties are poorly explored, leaving theoretical models largely uninformed. In this paper we model a population of X-ray binaries arising from zero metallicity stars. We explore how their properties depend on the adopted initial mass function (IMF) of primordial stars, finding a strong effect on their number and X-ray production efficiency. We also present scaling relations between XRBs and their X-ray emission with the local star formation rate, which can be used in sub-grid models in numerical simulations to improve the X-ray feedback prescriptions. Specifically, we find that the uniformity and strength of the X-ray feedback in the intergalactic medium is strongly dependant on the IMF. Bottom-heavy IMFs result in a smoother distribution of XRBs, but have a luminosity orders of magnitude lower than more top-heavy IMFs. Top-heavy IMFs lead to more spatially uneven, albeit strong, X-ray emission. An intermediate IMF has a strong X-ray feedback while sustaining an even emission across the intergalactic medium. These differences in X-ray feedback could be probed in the future with measurements of the cosmic dawn 21-cm line of neutral hydrogen, which offers us a new way of constraining population III IMF.Comment: Accepted for publication in MNRAS, 17 pages, 9 figure

    Low energy consequences from supersymmetric models with left-right symmetry

    Get PDF
    We consider several low energy consequences arising from a class of supersymmetric models based on the gauge groups SU(2)L×SU(2)R×U(1)BLSU(2)_L\times SU(2)_R \times U(1)_{B-L} and SU(4)C×SU(2)L×SU(2)RSU(4)_C\times SU(2)_L \times SU(2)_R in which the gauge hierarchy and μ\mu problems have been resolved. There are important constraints on the MSSM parameters tanβ(mt/mb)\tan \beta (\simeq m_t/m_b), BB and μ\mu, and we discuss how they are reconciled with radiative electroweak breaking. We also consider the ensuing sparticle and Higgs spectroscopy, as well as the decays bsγb\to s \gamma and μeγ\mu \to e \gamma. The latter process may be amenable to experimental tests through an order of magnitude increase in sensitivity.Comment: 17 pages, latex2

    Do experiments suggest a hierarchy problem?

    Get PDF
    The hierarchy problem of the scalar sector of the standard model is reformulated, emphasizing the role of experimental facts that may suggest the existence of a new physics large mass scale, for instance indications of the instability of the matter, or indications in favor of massive neutrinos. In the see-saw model for the neutrino masses a hierarchy problem arises if the mass of the right-handed neutrinos is larger than approximatively 10710^7 GeV: this problem, and its possible solutions, are discussed.Comment: revtex, 4 pages, 1 figur

    Minimal Supersymmetric Pati-Salam Theory: Determination of Physical Scales

    Get PDF
    We systematically study the minimal supersymmetric Pati-Salam theory, paying special attention to the unification constraints. We find that the SU(4)_c scale M_c and the Left-Right scale M_R lie in the range 10^{10} GeV < M_c < 10^{14} GeV, 10^{3} GeV < M_R <10^{10} GeV (with single-step breaking at 10^{10} GeV), giving a potentially accessible scale of parity breaking. The theory includes the possibility of having doubly-charged supermultiplets at the supersymmetry breaking scale; color octet states with mass of order M_R^2/M_c; magnetic monopoles of intermediate mass that do not conflict with cosmology, and a 'clean' (type I) form for the see-saw mechanism of neutrino mass.Comment: 5 page
    corecore